MENU

PUBLICATIONS

Selected Publications

  • Imai, H., Shima, T., Sutoh, K., Walker, M.L., Knight, P.J., Kon, T., Burgess, S.A.
    Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules.
    Nature Commun. 2015, 6: 8179. |DOI: 10.1038/ncomms9179.
  • Kon, T., Oyama, T., Shimo-Kon, R., Imamula, K., Shima, T., Sutoh, K., Kurisu, G.
    The 2.8 Å crystal structure of the dynein motor domain.
    Nature 2012, 484: 345-350.
  • Roberts, A.J., Kon, T., Knight, P.J., Sutoh, K., Burgess, S.A.
    Functions and mechanics of dynein motor proteins
    Nature Rev. Mol. Cell Biol. 2013, 14: 713-726
  • Kon, T., Sutoh, K., Kurisu, G.
    X-ray structure of a functional full-length dynein motor domain.
    Nature Struct Mol Biol. 2011 18: 638-642.
  • Kon, T., Imamula, K., Roberts, A.J., Ohkura, R., Knight, P.J., Gibbons, I.R., Burgess, S.A., Sutoh, K.
    Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding.
    Nature Struct. Mol. Biol. 2009, 16: 325-333.
  • Kon, T., Mogami, T., Ohkura, R., Nishiura, M., Sutoh, K.
    ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein
    Nature Struct. Mol. Biol. 2005, 12: 513-519.

Original Papers

  1. Yamamoto, R., Obbineni, J.M., Alford, L.M., Ide, T., Owa, M., Hwang, J., Kon, T., Inaba, K., James, N., King, S.M., Ishikawa, T., Sale, W.S., Dutcher, S.K.
    Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and propermorphology of inner dynein arms
    PLoS Genet. 2017, 13: e1007063. |DOI: 10.1371/journal.pgen.
  2. Kamiya, N., Mashimo, T., Takano, Y., Kon, T., Kurisu, G., Nakamura, H.
    Elastic properties of dynein motor domain obtained from all-atom molecular dynamics simulations.
    Protein Engineering, Design, and Selection 2016, 1-9. |DOI: 10.1093/protein/gzw022.
  3. Imai, H., Shima, T., Sutoh, K., Walker, M.L., Knight, P.J., Kon, T., Burgess, S.A.
    Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules.
    Nature Commun. 2015, 6: 8179. |DOI: 10.1038/ncomms9179.
  4. Uchimura, S., Fujii, T., Takazaki, H., Ayukawa, R., Nishikawa, Y., Minoura, I., Hachikubo, Y., Kurisu, G., Sutoh, K., Kon, T., Namba, K., Muto, E.
    A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation.
    J. Cell Biol. 2015, 208: 211-222| DOI: 10.1083/jcb.201407039.
  5. Nishikawa, Y., Oyama, T., Kamiya, N., Kon, T., Toyoshima, Y.Y., Nakamura, H., Kurisu, G.
    Structure of the Entire Stalk Region of the Dynein Motor Domain
    J. Mol. Biol. 2014, 426:3232-3245| DOI: 10.1016/j.jmb.2014.06.023.
  6. Ikuta, J., Kamisetty, N.K., Shitaku, H., Kotera, H., Kon, T., Yokokawa, R.
    Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface
    Sci. Rep. 2014, 4: 5281| DOI: 10.1038/srep05281
  7. Roberts, A.J., Kon, T., Knight, P.J., Sutoh, K., Burgess, S.A.
    Functions and mechanics of dynein motor proteins
    Nature Rev. Mol. Cell Biol. 2013, 14: 713-726
  8. Roberts, A.J., Malkova, B., Walker, M.L., Sakakibara, H., Numata, N., Kon, T., Ohkura, R., Edwards, T.A., Knight, P.J., Sutoh, K., Oiwa, K., Burgess, S.A.
    ATP-Driven Remodeling of the Linker Domain in the Dynein Motor.
    Structure 2012, 20: 1670-1680.
  9. Kon, T., Oyama, T., Shimo-Kon, R., Imamula, K., Shima, T., Sutoh, K., Kurisu, G.
    The 2.8 Å crystal structure of the dynein motor domain.
    Nature 2012, 484: 345-350.
  10. Kon, T., Sutoh, K., Kurisu, G.
    X-ray structure of a functional full-length dynein motor domain.
    Nature Struct Mol Biol. 2011 18: 638-642.
  11. Numata, N., Shima, T., Ohkura, R., Kon, T., Sutoh, K.
    C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation
    FEBS Lett. 2011, 585: 1185-1190.
  12. Kon, T., Shima, T., Sutoh, K.
    Protein engineering approaches to study the dynein mechanism using a Dictyostelium expression system.
    Methods Cell Biol. 2009, 92: 65-82.
  13. Kon, T., Imamula, K., Roberts, A.J., Ohkura, R., Knight, P.J., Gibbons, I.R., Burgess, S.A., Sutoh, K.
    Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding.
    Nature Struct. Mol. Biol. 2009, 16: 325-333.
  14. Roberts, A.J., Numata, N., Walker, M.L., Malkova, B., Kon, T., Ohkura, R., Arisaka, F., Knight, P.J., Sutoh, K., Burgess, S.A.
    AAA+ ring and linker swing mechanism in the dynein motor.
    Cell. 2009, 136: 485-495.
  15. Inoue, T., Kon, T., Ohkura, R., Yamakawa, H., Ohara, O., Yokota, J., Sutoh, K
    BREK/LMTK2 is a myosin VI-binding protein involved in endosomal membrane trafficking.
    Genes Cells. 2008, 13: 483-495.
  16. Numata, N., Kon, T., Shima, T., Imamula, K., Mogami, T., Ohkura, R., Sutoh, K., Sutoh, K.
    Molecular mechanism of force generation by dynein, a molecular motor belonging to the AAA+ family.
    Biochem. Soc. Trans. 2008, 36: 131-135.
  17. Yokokawa, R., Tarhan, M.C., Kon, T., Fujita, H.
    Simultaneous and Bidrectional Transoprt of Kinesin-Coateed Microspheres and Dynein-Coated Microspheres on Polarity-Oriented Microtubules.
    Biotechnol. Bioeng. 2008, 101: 1-8.
  18. Yokokawa, R., Murakami, T., Sugie, T., and Kon, T.
    Polarity Orientation of Microtubules Utilyzing Dynein-Based Gliding Assay.
    Nanotechnology 2008, 19: 125505.
  19. Mizuno, N., Narita, A., Kon, T., Sutoh, K., Kikkawa M
    Three-dimensional structure of cytoplasmic dynein bound to microtubules.
    Proc. Natl. Acad. Sci. U S A. 2007, 104: 20832-20837.
  20. Imamula, K., Kon, T., Ohkura, R., Sutoh, K.
    The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein
    Proc. Natl. Acad. Sci. U S A. 2007, 104: 16134-16139.
  21. Mogami, T., Kon, T., Ito, K., Sutoh, K.
    Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein
    J. Biol. Chem. 2007, 282: 21639-21644.
  22. Ito, K., Ikebe, M., Kashiyama, T., Mogami, T., Kon, T., Yamamoto, K.
    Kinetic mechanism of the fastest motor protein, Chara myosin
    J. Biol. Chem. 2007, 282: 19534-19545.
  23. Shima, T., Kon, T., Imamula, K., Ohkura, R., Sutoh, K.
    Two modes of microtubule sliding driven by cytoplasmic dynein
    Proc. Natl. Acad. Sci. U S A. 2006, 103: 17736-17740.
  24. Shima, T., Imamula, K., Kon, T., Ohkura, R., Sutoh, K.
    Head-head coordination is required for the processive motion of cytoplasmic dynein, an AAA+ molecular motor
    J. Struct. Biol. 2006, 156: 182-189.
  25. Inoue, T., Kon, T., Ajima, R., Ohkura, R., Tani, M., Yokota, J., Sutoh, K.
    MYO18B interacts with the proteasomal subunit Sug1 and is degraded by the ubiquitin–proteasome pathway
    Biochem. Biophys. Res. Comm. 2006, 342: 829-834.
  26. Yokokawa, R., Yoshida, Y., Takeuchi, S., Kon, T., and Fujita, H.
    Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel.
    Nanotechnology 2006, 17: 289-294.
  27. Isogawa, Y., Kon, T., Inoue, T., Ohkura, R., Yamakawa, H., Ohara, O., Sutoh, K.
    The N-terminal domain of MYO18A has an ATP-insensitive actin-binding site
    Biochemistry. 2005, 44: 6190-6196.
  28. Kon, T., Mogami, T., Ohkura, R., Nishiura, M., Sutoh, K.
    ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein
    Nature Struct. Mol. Biol. 2005, 12: 513-519.
  29. Yokokawa, R., Yoshida, Y., Takeuchi, S., Kon, T., Sutoh, K., and Fujita, H.
    Evaluation of Cryopreserved Microtubules Immobilized in Microfluidic Channels for Bead-Assay-Based Transportation System.
    IEEE Trans. Adv. Packag. 2005, 28: 577-583.
  30. Yokokawa, R., Takeuchi, S., Kon, T., Nishiura, M., Sutoh, K., Fujita, H.
    Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device
    Nano letters. 2004, 4: 2265-2270.
  31. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y.Y., Sutoh, K.
    Distinct Functions of Nucleotide-Binding/Hydrolysis Sites in the Four AAA Modules of Cytoplasmic Dynein
    Biochemistry. 2004, 43: 11266-11274.
  32. Asano, Y., Mizuno, T., Kon, T., Nagasaki, A., Sutoh, K., Uyeda, T.Q.
    Keratocyte-like locomotion in amiB-null Dictyostelium cells
    Cell Motil. Cytoskeleton. 2004, 59: 17-27.
  33. Nishiura, M., Kon, T., Shiroguchi, K., Ohkura, R., Shima, T., Toyoshima, Y.Y., Sutoh, K.
    A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules
    J. Biol. Chem. 2004, 279: 22799-22802.
  34. Yokokawa, R., Takeuchi, S., Kon, T., Nishiura, M., Ohkura, R., Edamatsu, M., Sutoh, K., Fujita, H.
    Hybrid nanotransport system by biomolecular linear motors
    IEEE/ASME J. Microelectromech. Syst. 2004, 13: 612-619.
  35. Suzuki, T., Iwasaki, T., Uzawa, T., Hara, K., Nemoto, N., Kon, T., Ueki, T., Yamagishi, A., Oshima, T.
    Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu hot springs, Japan
    Extremophiles. 2002, 6: 39-44.
  36. Kon, T., Nemoto, N., Oshima, T., Yamagishi, A.
    Effects of a squalene epoxidase inhibitor, Terbinafine, on ether lipid biosynthesis in a thermoacidophilic archaeon, Thermoplasma acidophilum
    J. Bacteriol. 2002, 184: 1395-1401.
  37. Kon, T., Adachi, H., Sutoh, K.
    amiB, a novel gene required for the growth/differentiation transition in Dictyostelium.
    Genes Cells. 2000, 5: 43-55.
  38. Saito, J., Kon, T., Nagasaki, A., Adachi, H., Sutoh, K.
    Dictyostelium TRFA homologous to yeast Ssn6 is required for normal growth and early development
    J. Biol. Chem. 1998, 273: 24654-24659.
  39. Iwasaki, T., Suzuki, T., Kon, T., Imai, T., Urushiyama, A., Ohmori, D., Oshima, T.
    Novel zinc-containing ferredoxin family in thermoacidophilic archaea
    J. Biol. Chem. 1997, 272: 3453-3458.

Reviews

  1. Shima, Kon, T.
    Structural and Functional Analysis of the Dynein Motor Domain.
    In Handbook of Dynein (Amos, L and Hirose, K., Eds), 2018. Pan Stanford Publishing Pte Ltd. In press
  2. 昆 隆英
    リング型ATP加水分解モーター「ダイニン」の構造と力発生機構
    CSJ Current Review 26 分子マシンの科学(日本化学会 編), 化学同人, 2017, ISBN: 9784759813869, pp178-182
  3. Oyama, T., Kurisu, G., Kon, T.
    細胞内の巨大な分子モーター「ダイニン」の構造解析
    日本放射光学会誌「放射光」, 2016, 29: 1-8.
  4. Kurisu, G., Kon, T.
    Crystal structure of the cytoplasmic dynein motor domain.
    ライフサイエンス領域融合レビュー, 2016, 5, e001 |DOI: 10.7875/leading.author.5.e001
  5. 昆 隆英
    細胞中心方向への輸送エンジン「ダイニン」
    日本の結晶学(II)(日本結晶学会「日本の結晶学(II)」出版編集委員会編)
  6. 昆 隆英
    「ダイニン」
    1分子生物学(原田慶恵, 石渡信一 編), 化学同人, 2014, ISBN: 9784759815184,
    5章, 63-73
  7. 昆 隆英
    細胞中心方向への輸送エンジン「ダイニン」の構造と運動機構
    「構造生命科学で何がわかるのか,何ができるのか」
    田中啓二,若槻壮市/編
    実験医学増刊. 2014, 32: 221-224. ISBN 978-4-7581-0339-8
  8. 昆 隆英, 栗栖源嗣
    細胞中心方向への輸送エンジン:細胞質ダイニンの構造と運動メカニズム
    生化学. 2013, 85: 272-275.
  9. Kon, T., Kurisu, G.
    The 2.8 Å crystal structure of dynein motor domain.
    Spring-8 Research Frontiers, 2012, 26-27.
  10. Kon, T., Shima, T., Sutoh, K.
    Dynein | Cytoplasmic Dynein: its ATPase Cycle and ATPase-dependent Structural Changes.
    Comprehensive Biophysics, 1st Edition (Editor in Chief: Edward Egelman), Elsevier, 2012, vol 4: 4.19.
  11. Shima, T., Sutoh, K., Kon, T.,
    Functional analysis of the dynein motor domain.
    In Handbook of Dynein (Amos, L and Hirose, K., Eds), 2012. pp43-62. Pan Stanford Publishing Pte Ltd.
  12. 島 知弘, 須藤和夫, 昆 隆英
    細胞質ダイニンの構造と機能のモジュール性
    生物物理. 2011, 51: 118-123.
  13. Kon, T., Sutoh, K., Kurisu, G.
    X-ray structure of functional full-length dynein motor domain.
    Spring-8 Research Frontiers, 2011, 28-29.
  14. 昆 隆英
    ダイニンの構造とモーター活性の解析
    生物物理. 2007, 47: 384-389.
  15. Yamagishi, A., Kon, T., Takahashi, G., Oshima, T.
    From the common ancestor of all living organisms to proteoeukaryotic cell.
    In Thermophiles: the keys to molecular evolution and the origin of life? (Wiegel, J and Adams, M, Eds.), Taylor & Francis Inc., Philadelphia, 1998, pp287-295.