図1. 光化学系1と電子伝達蛋白質フェレドキシンの

複合体結晶構造(Nature Plants 2018)

蛋白質研究所

源嗣 (Genii KURISU) 栗栭

gkurisu @protein.osaka-u.ac.jp

川本 晃大 (Akihiro KAWAMOTO) 肋

kawamoto @protein.osaka-u.ac.ip

URL: http://www.protein.osaka-u.ac.jp/crystallography/LabHP/

我々は、蛋白質結晶学とクライオ電 子顕微鏡の手法で蛋白質複合体の立 体構造を解析し,立体構造に基づいて 生命機能を理解しようという研究室で す。精製した蛋白質の構造を解析する ことで、全ての生命現象を理解できる とは思いませんが、生命が持つ基本的 な反応系. 例えば「呼吸」、「光合成」、 「牛体運動」などに限って考えた場合. その働きは複合体蛋白質の立体構造 を基に理解することができます。今に も回り出しそうな状態で構造解析され たF1-ATPase の結晶構造(1998 年 ノーベル化学賞)などはその良い例で しょう。我々の研究室では「光合成」 「エネルギー変換」「生体超分子」を キーワードに、以下のような研究プロ ジェクトを進めています。

光合成生物のエネルギー変換反応. レドックス代謝ネットワーク

エネルギー変換膜に存在する膜蛋 白質複合体やその周辺の蛋白質を結 晶化し構造解析することにより,生体膜 とリンクした機能発現機構の解明を目 指しています。具体的には、光化学系I 複合体からフェレドキシンを介して窒素 同化酵素へ電子が伝達される仕組み, チトクロムb6f 複合体に電子が循環す る仕組み,さらには光環境に適応して 組み上がる超分子複合体形成の仕組 みを複合体状態の結晶構造を基に理 解したいと考えています。光環境適応の 構造研究は、ロンドン大学クイーン・メア リー(イギリス). ルール大学ボーフム(ド イツ),ミュンスター大学(ドイツ)との国 際共同研究として行っています。

巨大な生体分子モーターであるダイ 二ンの構造-機能相関の解明

モーター蛋白質は、ヌクレオチド状態に 依存する構造変化により運動活性を生 み出しています。我々は、微小管系モー ター蛋白質であるダイニンの運動機構を 完全に理解することを目指して、ダイニン モータードメインの構造解析を行ってい ます。特に、構造の明らかになっていない 軸糸ダイニンのモータードメイン. その中 でも微小管結合領域を含む「ストーク」と

呼ばれる長いコイルドー コイル領域に注目して 構造研究を進めていま す。また、構造研究の進 んでいる細胞質ダイニ ンについても,ストーク 領域が微小管と結合・ 解離する構造基盤をあ きらかにするため, NMRや分子動力学計 算も併用して高分解能 での構造解析を目指し ています。

C-sequence AAA6 AAA5 Stalk Stalks AAA4 AAA3 Strut AAA2 (Buttress) AAA1 Linker Tail Motor Domain Heavy Chain Tail 図2. ダイニンモータードメインと ストーク領域の構造

金属蛋白質の精密構造研究

生体中には鉄や銅などの 金属を酸化還元中心にもつ 金属蛋白質が多く存在してい ます。高輝度放射光を用いる ことで、様々な金属蛋白質の 構造が明らかになってきまし たが,一方で放射線損傷や

測定中のX線照射による還元など, 化学 的に厳密な構造解析をすることができな い状況でした。X線自由電子レーザーや 中性子構造解析法を適用することで, redox状態を厳密にコントロールしながら より精密な構造解析を行っています。

この研究室は2025年度に学生を募集しません

(Nature 2012, J. Mol. Biol., 2014)

〒565-0871 大阪府吹田市山田丘3-2 大阪大学蛋白質研究所

TEL:06-6879-8604 FAX:06-6879-8606

